Ring Expansion of Diazo-F unctionalized 4-Hydroxycyclobutenone: Catalytic Ring Opening and Recyclization to 2(5H)-Furanone/ Cyclopentenedione and Thermal $4 \pi-8 \pi$ Electrocyclic Ring Opening-Closure to Diazepinedione

Masatomi Ohno,* Masashi Noda, Yoshihiko Yamamoto, and Shoji Eguchi*
Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, J apan

Received March 19, 1998

Abstract

The acid-catalyzed and Rh-catalyzed (also photolyzed) decomposition of 4-hydroxycyclobutenones with a diazo group at C-4 gave 2(5H)-furanone and/or cyclopentene-1,3-dione via an α-carbocation intermediate and a carbenoid (carbene) intermediate, respectively. Thermal rearrangement of some of these compounds led to the formation of diazepinediones without the extrusion of nitrogen through tandem 4π electrocydic ring opening and 8π electrocydic ring closure processes.

Squaric acid (1) continues to attract attention in organic synthesis as a useful C_{4}-synthon with a fourmembered ring strain to drive reactions. ${ }^{1}$ Synthesis using 1 starts with the nucleophilic addition of a functional group to cyclobutenedione ($\mathbf{2} \rightarrow \mathbf{3}$), and the resulting 4-hydroxycycl obutenones $\mathbf{3}$ are subjected to various ringtransformation reactions (e.g., Scheme 1). Most of these reactions involve tandem electrocyclic rearrangements. The relief of ring strain by 4π ring opening to vinylketene is an initial step, ${ }^{2}$ and this is followed by 6π ring closure with the participation of an unsaturated addend, to give pol ysubstituted six-membered cyclic compounds ($\mathbf{4} \rightarrow \mathbf{5}$). ${ }^{3}$ Paquette and co-workers recently developed an 8π ring closure process for the bisadduct of vinylic carbanions to polyquinanes, which raises new possibilities for the synthetic application of $\mathbf{1}{ }^{4}$ Alternative ring transformations rely on a 1,2 -acyl shift induced by reactive intermediates ${ }^{5}$ or transition metal catalysts. ${ }^{6}$ These reactions give rise to five-membered rings including 4 -cyclopen-tene-1,3-diones and 2(5H)-furanones. Cationic rearrange-

[^0]Scheme 1

3

6

ment has been used to synthesize dimethylgloiosiphone A using such a cyclopentenedione as a key intermediate. ${ }^{5 d}$ In our laboratory, the Lewis acid-catalyzed reaction of alkynylsilanes with cyclobutenedione monoacetal 6 obtained from $\mathbf{1}$ was found to involve a new 1,2-silyl shift on the triple bond to generate an α-vinyl cation, which induced ring-expansion to 2 -alkylidene-4-cyclopentene-1,3-dione ($\mathbf{7} \boldsymbol{\rightarrow 8}$). ${ }^{\text {5f }}$ The oxy-radical generated by the action of $\mathrm{Pb}(\mathrm{OAc})_{4}$ induced β-scission, which was followed by 5 -endo-trig cyclization to $2\left(5 \mathrm{H}\right.$)-furanones $\left(\mathbf{9 \rightarrow 1 0}\right.$). ${ }^{5 \mathrm{c}}$
Regarding the above ring transformations, we have been interested in 4-hydroxycyclobutenones functionalized with a diazo group at the C-4 side chain. This functionality can serve as a carbene and carbocation source and as an unsaturated moiety. The starting diazofunctionalized 4-hydroxycycl obutenones 12a-e were prepared by adding lithium enolates of diazoacetates and a

Scheme 2

Scheme 3

diazoketone at $-78^{\circ} \mathrm{C}$ to cycl obutenedione $\mathbf{1 1}$, which was derived from $\mathbf{1}$ (Scheme 2). ${ }^{7}$
First, the catalyzed decomposition of the three diazo compounds 12a-c was examined. Padwa and co-workers recently reported the prototypical reaction of related diazo-functionalized hydroxycyclobutanes with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a catalyst. ${ }^{8}$ In this case, ring expansion to a fivemembered ring was explained by a 1,2-methylene shift via a vinyl cation intermediate (Scheme 3).
Thus, α-diazo- α-cyclobutenyl acetate 12a was allowed to react with this catalyst, and the expected decomposition took place smoothly at $0{ }^{\circ} \mathrm{C}$ within 30 min (Table 1, entry 1). After workup and chromatographic separation, three products were obtained, albeit in low yields. One of them was believed to be 1,2-acyl-shifted 4 -cyclopen-tene-1,3-dione 13d based on spectroscopic examination. The MS molecular ion peak at $\mathrm{m} / \mathrm{z} 154$ reflected the loss of $\mathrm{N}_{2}, \mathrm{CO}_{2}$, and $\mathrm{CH}_{2} \mathrm{CMe}_{2}$ from the molecule. ${ }^{1} \mathrm{H}$ NMR (only ethoxy, methyl, and methylenesignals at $\delta 1.40$ and 4.69, 1.94, and 2.91, respectively) and ${ }^{13} \mathrm{C}$ NMR (ring carbon signals at $\delta 42.2,137.4,166.7,196.0$, and 197.2 with required signals due to substituents) were compatible with the assigned structure. Ring expansion took place with concomitant fragmentation of the primarily formed tert-butyl ester 13a, which could be due to the leaving ability of the attached cycl openetenedi one moiety. The other two products were determined to be geometrical isomers of 5-[(tert-butoxycarbonyl)methylene]-2(5H)-furanone 14a (E/Z = 73/27) by comparison with the authentic (E)- and (Z)-isomers (31/69) which were obtained by our established procedure using $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation (i.e., via an intermediate such as 9). ${ }^{5 \mathrm{Cb}}$ In this case, the stereochemistry could be determined based on the relative ${ }^{1} \mathrm{H}$ NMR chemical shift due to an exomethylene proton, which was observed at a lower region in $E(\delta 5.85)$ than in $Z(\delta 5.54) .5,9$ This tendency was used

[^1]Table 1. Catalyzed and Photolyzed Reaction of Diazo-F unctionalized Cyclobutenones 12a-c

entry	compd	catalyst ${ }^{\text {a }}$ [amount]	$\begin{aligned} & \text { temp, }{ }^{\circ}{ }^{\circ} \mathrm{C} \end{aligned}$	product [yield (\%)] (E/Z ratio) ${ }^{\text {c }}$	
1	12a	BF_{3} [1.2 equiv]	0	13d [9],	$\begin{aligned} & \text { 14a }[27] \\ & (E / Z=73 / 27) \end{aligned}$
2	12a	TiCl_{4} [1.2 equiv]	0	13d [18]	
3	12a	SnCl [1.2 equiv]	0	13d [2]	
4	12a	TFA [1.2 equiv]	0	13d [50],	14a [23] $(\mathrm{E} / \mathrm{Z}=58 / 42)$
5	12a	TMSOTf [20 mol \%]	rt	13d [42],	14a [36] $(E / Z=73 / 27)$
6	12a	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ [2.5 mol \%]	0	13d [77],	$\begin{aligned} & \text { 14a }[6] \\ & (E / Z=0 / 100) \end{aligned}$
7	12a	$\mathrm{h} v$	rt	13d [45],	$\begin{aligned} & \text { 14a }[14] \\ & (E / Z=75 / 25) \end{aligned}$
8	12b	TFA [1.2 equiv]	0		$\begin{aligned} & 14 b[51] \\ & (E / Z=50 / 50) \end{aligned}$
9	12b	TMSOTf [20 mol \%]	rt		$\begin{aligned} & \text { 14b }[58] \\ & (E / Z=75 / 25) \end{aligned}$
10	12b	$\mathrm{Rh}_{2}(\mathrm{OAC})_{4}$ [2.5 mol \%]	0	13b [69]/	3d [17]
11	12c	TFA [1.2 equiv]	0	13c [83]	
12	12c	TMSOTf [20 mol \%]	rt	13c [50],	$\begin{aligned} & \mathbf{1 4 c}[47] \\ & (E / Z=64 / 36) \end{aligned}$
13	12c	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ [$2.5 \mathrm{~mol} \%$]	0	13c [70]	

a Solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\text {b }}$ Reaction time: 30 min except for entry 7 (19 h). ${ }^{\text {c }}$ The ratio was obtained by ${ }^{1} \mathrm{H}$ NMR measurement.
to deduce the stereochemistry of analogous products obtained from 12b,c. Other Lewis acids such as TiCl_{4} and SnCl_{4} resulted in negligible yields of 13d (entries 2 and 3). On the other hand, trifluoroacetic adid (TFA) catal yzed ring expansion with much better yields [13d: 50\%, 14a: $23 \%(E / Z=58 / 42)$] under the same reaction conditions (entry 4); similar results were obtained in the case of trimethylsilyl triflate (TMSOTf) (entry 5). Carbene-type rearrangement was achieved by catalysis with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and by photolysis (entries 6 and 7). While these "Iyses" may proceed via different mechanisms, the same products were obtained in the sel ective formation of the cyclopentenedione (13d: 77\%, 14a: 6\% for Rh-catalysis; 13d: 45\%, 14a: 14\% for photolysis).
Among the reaction conditions examined above, the catalytic reactions using TFA, TMSOTf, and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ were fruitful and therefore selected for diazo-ester 12b and diazo-ketone 12c. In the same manner, corresponding products $\mathbf{1 3 b}, \mathbf{c}$ and $\mathbf{1 4 b}, \mathbf{c}$ were obtained in comparable yields, as shown in entries $8-13$, and were characterized by analogy with 13d and 14a. The TFAcatalyzed reaction selectively gave the furanone 14b from $\mathbf{1 2 b}$ and the cyclopentenedione 13c from 12c. The cyclopentenedione structure of $\mathbf{1 3}$ b from the ethyl ester 12b was very susceptible to fragmentation, as seen in the tertbutyl ester 13a, and thus Rh-catalyzed decomposition was accompanied by the minor formation of 13d.
The relative yields of cyclopentenedione to furanone (13/14) shown in Table 1 seem to reflect a kinetic product ratio, except for the less significant reactions in entries

Scheme 4

$1-3$. Control experiments indicated that $\mathbf{1 3}$ and $\mathbf{1 4}$ were not interconvertible under these conditions ${ }^{10}$ (the possibility of the conversion 13a to 14a can be excluded because of concomitant fragmentation). The observed difference in the product ratio may be explained by the nature of the catalysts and the enolizability of the intermediates invol ved (vide infra). The E/Z ratio of the furanones $\mathbf{1 4}$ varied slightly depending on the reaction conditions, although (E)-isomers were generally predominant ($\mathrm{E} / \mathrm{Z} \sim 7 / 3$). ${ }^{11}$

The mechanism of the ring expansion to two types of five-membered rings is illustrated in Scheme 4. Regardless of the catalysts used, these rearrangements can be explained by considering the participation of an electrondeficient carbon center, which is generated by the action of the catalysts or by photoexcitation and triggers the ring expansion of cyclobutenone. Padwa's related rearrangement of 2-diazo-(1-hydroxycyclobutyl)acetate has been suggested to proceed via (1) complexation of the alcohol functionality with a BF_{3} catalyst to generate cyclobutylidene diazonium salt, (2) loss of nitrogen to produce a linear vinyl cation, and (3) a 1,2-methylene shift to a cyclopentenyl cation (see Scheme 3). ${ }^{8}$ However, this mechanism is not consistent with our experimental findings, since the furanone, one of the ring-expansion products, should originate from the ring-opened structure. Our previous ring-expansion reaction induced by an α-vinyl cation (i.e., $\mathbf{7 \rightarrow 8}$) proceeded via the formation of ring-opened acyl cation and recombination with an allenyl end. ${ }^{5 f}$ In the analogous TFA-catalyzed rearrangement of succinoin derivatives, a similar process (recom-

[^2]bination of the acyl cation with an enol end) was reported to be likely. ${ }^{12}$ These sequential reaction paths are consistent with the formation of both products from the catalytic and photolytic reactions as described above. Thus, protonation (silylation) or coordination of BF_{3} on the diazo group produces a diazonium salt $\mathbf{1 5}$, which then eliminates nitrogen to generate a carbocation α to the cycl obutenone ring. Interaction of the Rh catalyst with this group forms a Rh-carbene complex 17, which has a positive center because of the polar nature of the metal carbon double bond. ${ }^{13}$ The carbene generated under photolytic conditions can be considered an electropositive intermediate. ${ }^{14}$ Therefore, these intermediates with an electron-deficient center, while formed by different processes, induce ring-opening to give stable conjugated acyl cations 16. In the subsequent recyclization step, these cations have two opportunities to form a new bond with both oxygen and carbon sites of the opposite enol end, giving 13 and 14, respectively. In contrast, all of the Rhcatalyzed reactions produced the cyclopentenedione selectively. Since the Rh-carbenoid is known to undergo cation-like rearrangement, ${ }^{15} \mathbf{1 7}$ can also follow the similar type of ring-opening to give a zwitterionic intermediate 18. While simple recyclization of $\mathbf{1 8}$ might lead to the formation of $\mathbf{1 3}$, we prefer the involvement of a metallacyclic intermediate $\mathbf{2 0}$ formed either from the direct recombination of an acyl cation with a Rh center or from the 6π electrocyclization of a conjugated vinylketene 19. Subsequent reductive elimination may be responsible for the observed selectivity. ${ }^{16}$ It is difficult to completely explain the selectivity observed in TFA- and TMSOTf-catalyzed reactions; e.g., TFA selectively produces the furanone in 12b, the cyclopentenedione in 12c, and both in 12a, whereas TMSOTf tends to enhance furanone formation. Nevertheless, the preference for an enol form in the ring-opened 1,3-dicarbonyl intermediate 16 might be due to $\mathrm{C}-\mathrm{C}$ bond formation rather than $\mathrm{C}-\mathrm{O}$ bond formation. On the other hand, a bulky silyl group may play a role in TMSOTf catalysis, thus retarding the formation of the former bond. Finally, we consider the stereochemistry of the furanone products. While the oxy-radical-mediated reaction predominantly gave the thermodynami cally favored (Z)-isomer ($\mathbf{3} \rightarrow \mathbf{1 0 b}$), ${ }^{5 \mathrm{c}}$ content of (E)-isomer was increased in the present reaction. ${ }^{17} \mathrm{~A}$ hydrogen-bonded structure such as $\mathbf{2 1}$ might contribute in part to this inverse trend at the recyclization step.
The thermal reaction of diazo-functionalized cyd obutenones $\mathbf{1 2}$ is a new type of ring transformation based on $\mathbf{1}$. In contrast to the above decomposition reactions, the

[^3]Scheme 5

products were obtained as structural isomers in moderate yields, when 12a-c were heated to reflux in xylene for 30 min . This isomerism was revealed by an MS analysis, which showed molecular ion peaks with the same mass numbers ($\mathrm{m} / \mathrm{z} 254$ and 286) as those of starting 12b and 12c, respectively, and was al so supported by an elemental analysis. The presence of an amino group was indicated by IR absorption at around $3200 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra contained a broad singlet due to a NH group (δ 9.39-9.73), and all of the ${ }^{13} \mathrm{C}$ NMR signals due to skeletal carbons appeared in the sp^{2} region. These data allowed us to assign the products as diazepinediones 24a-c which is consistent with the mechanism described below. Although photolysis facilitated the decomposition of a diazo group, it remained intact during thermolysis to lead to a diazovinylketene intermediate $\mathbf{2 2}$ via 4π electrocyclic ring-opening. The resulting conjugated system 22 could recyclize via 8π electrocyclic ring closure (1,7-dipolar cyclization) to 23, which was followed by prototropy to the diazepinedione $\mathbf{2 4}$ (Scheme 5). 8π Electrocyclization is a useful method for the synthesis of 1,2-diazepine. ${ }^{18}$ The reaction of 12c was accompanied by the formation of 13c via the aforementioned carbene route; similarly, 12d gave both 13e and 22d. Phenyl-substituted 12e resulted in the formation of only $\mathbf{1 3 f}$. Since the 2 -substituent on $\mathbf{1 2}$ influences the 4π electrocydic ring-opening less significantly, ${ }^{2}$ the relative instability of the diazo group led to the carbene route.

In summary, diazo-functionalized 4-hydroxycyclobutenones 12 derived from 1 underwent ring-expansion to cyclopentenedione/2(5H)-furanone 13/14 through a sequential ring-opening and recombination process, triggered by an electron-deficient carbon center generated upon catalysis and photolysis. The thermal reaction of 12 gave a new seven-membered heterocyclic ring system, diazepinedione 22, via tandem $4 \pi-8 \pi$ electrocyclic ring

[^4]opening-closure as a new type of ring transformation in squaric acid chemistry. ${ }^{19}$

Experimental Section

General Remarks. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in CDCl_{3} solution with SiMe_{4} as an internal standard. $\mathrm{CH}_{2}-$ Cl_{2} was dried over CaCl_{2}, distilled, and kept over $4 \AA$ molecular sieves, while THF was dried over $\mathrm{Na} / \mathrm{Ph}_{2} \mathrm{CO}$ and distilled before use. Aromatic solvents were dried over Na. Flash chromatography was carried out using a Fuji-Davison BW300 with hexane (H) and ethyl acetate (A) as an eluent. Squaric acid was provided by K yowa Hakko Kogyo Co., Ltd. Preparation of the squaric acid derivatives 11a-c has been reported previously. ${ }^{3 c, 20}$
Representative Procedure for the Synthesis of 12ae. To a solution of 11 ($1117 \mathrm{mg}, 7.97 \mathrm{mmol}$) and tert-butyl diazoacetate ($2266 \mathrm{mg}, 15.94 \mathrm{mmol}$) in THF (40 mL) was added LDA [prepared from diisopropylamine ($1937 \mathrm{mg}, 19.14 \mathrm{mmol}$) and BuLi (11.86 mL of 1.6 M hexane solution, 19.14 mmol) and cooled at $-10^{\circ} \mathrm{C}$] at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the solution was stirred for 1 h at this temperature. After the sol ution was mixed with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and diluted with brine, the product was extracted with ether ($50 \mathrm{~mL} \times 3$). Extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was chromatographed to give the diazocycl obutenone 12a ($868 \mathrm{mg}, 47 \%$).
In the same manner, 12d and 12e were obtained in yields of 41% and 46% from 11b and 11c, respectively. Furthermore, 12b and 12c were obtained in yields of 41% and 30% from 11a with ethyl diazoacetate and benzoyldiazomethane, respectively, except that the reaction was for 2 h at $-78^{\circ} \mathrm{C}$ and quenching was with aq $\mathrm{NH}_{4} \mathrm{Cl}$ for $\mathbf{1 2 b}$ and acetic acid for 12c.
tert-Butyl 2-(2-ethoxy-1-hydroxy-3-methyl-4-oxo-2-cy-clobutenyl)-2-diazoacetate (12a): Elution with (H/A 3/1); oil; IR (neat) 2103, 1761, 1694, $1616 \mathrm{~cm}^{-1}$; 1H NMR $\delta 1.46$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 4.41$ and 4.51 (each $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=9.9,7.0 \mathrm{~Hz}$), $5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR δ $6.8,15.2,28.4$ (3C), 31.3, 69.2, 82.9, 85.9, 125.2, 165.5, 181.9, 189.9; MS (EI) m/z (relative intensity), 199 (M - 83, 14), 152 (87), 83 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 55.31; H, 6.43; N, 9.22. Found: C, 55.86; H, 6.10; N, 9.42.
Ethyl 2-(2-ethoxy-1-hydroxy-3-methyl-4-oxo-2-cyclobu-tenyl)-2-diazoacetate (12b): Elution with (H/A 5/1); crystal, $\mathrm{mp} 81-83^{\circ} \mathrm{C}$; IR (KBr) 2103, 1763, 1696, $1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.72(3 \mathrm{H}$, s), $4.21(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 4.42$ and 4.52 (each $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ $9.8,7.0 \mathrm{~Hz}), 5.51\left(1 \mathrm{H}, \mathrm{br}\right.$ s); ${ }^{13} \mathrm{C}$ NMR $\delta 6.7,14.4,15.1,58.2$, 61.2, 69.2, 85.3, 125.1, 165.4, 182.3, 190.7; MS (EI) m/z (relative intensity), 226 (M - 28, 5), 152 (51), 83 (100). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $51.97 ; \mathrm{H}, 5.55 ; \mathrm{N}, 11.02$. Found: C, 52.13; H, 5.57; N, 10.84.

4-(1-Diazo-2-oxo-2-phenylethyl)-3-ethoxy-4-hydroxy-2-methyl-2-cyclobutenone (12c): Elution with (H/A 3/1); oil; IR (neat) 2091, 1763, 1615, $708 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.48$ (3 H, t, $J=7.0 \mathrm{~Hz}$), $1.79(3 \mathrm{H}, \mathrm{s}), 4.45$ and 4.56 (each $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=9.8$, $7.0 \mathrm{~Hz}), 5.77$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $7.40-7.65(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 6.9$, 15.1, 67.8, 69.4, 86.6, 125.5, 127.6 (2C), 129.1 (2C), 132.5, 137.3, 181.8, 189.5, 189.6; MS (EI) m/z (relative intensity), 258 (M 28, 38), 105 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 62.93$; H , 4.93; N, 9.79. Found: C, 62.78; H, 5.00; N, 9.71
tert-Butyl 2-(3-butyl-2-ethoxy-1-hydroxy-4-oxo-2-cy-clobutenyl)-2-diazoacetate (12d): Elution with (H/A 5/1); oil; IR (neat) 2101, 1755, 1694, $1609 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.23-1.60(4 \mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz})$, $1.47(9 \mathrm{H}, \mathrm{s}), 2.11(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 4.38$ and 4.51 (each 1 $\mathrm{H}, \mathrm{dq}, \mathrm{J}=9.9,7.0 \mathrm{~Hz}$), $5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.7,15.2$,

[^5]22.1, 22.6, 28.4 (3C), 31.3, 69.0, 83.0, 85.9, 130.1, 165.5, 181.8, 189.6; MS (EI) m/z (relative intensity), 240 ($\mathrm{M}-84,34$), 151 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 59.24; H, 7.46; N, 8.64. Found: C, 59.43; H, 7.45; N, 8.46.
tert-Butyl 2-(2-ethoxy-1-hydroxy-3-phenyl-4-oxo-2-cy-clobutenyl)-2-diazoacetate (12e): Elution with (H/A 10/1); crystal, mp 127-129 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2105, 1742, 1692, $1622 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.39(9 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.52$ and 4.70 (each $1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=9.8,7.0 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.25-$ 7.73 ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\delta 15.2,28.4$ (3C), 31.2, 69.0, 70.0, 83.0, $86.6,126.3,127.6$ (2C), 128.7, 128.6, 128.7, 128.8 (2C), 165.5, 180.9, 187.9; MS (EI) m/z (relative intensity), 316 (M - 28, 34), 242 (52), 214 (100). Anal. Cal cd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.78; H, 5.85; N, 8.13. Found: C, 62.89; H, 6.02; N, 7.85 .

Representative Procedure for the Catalyzed Decomposition of $\mathbf{1 2 a}-\mathbf{c}$. To a solution of $\mathbf{1 2 a}$ ($116 \mathrm{mg}, 0.41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a catalyst in the amount and at the temperature shown in Table 1 under a nitrogen atmosphere, and stirring was continued for 30 min . The solution was then mixed with 10% aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the products were extracted with ether ($10 \mathrm{~mL} \times 3$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was chromatographed to give the cyclopentenedione and/or furanone. The yields are summarized in Table 1.

4-Ethoxy-5-methyl-4-cyclopentene-1,3-dione (13d): Elution with H/A 10/1; oil as the first fraction; IR (neat) 1755, $1696,1622 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$), 1.94 (3 $\mathrm{H}, \mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ 7.0 Hz); ${ }^{13} \mathrm{C}$ NMR $\delta 7.2,15.9,42.2,68.1,137.4,166.7,196.0$, 197.2; MS (EI) m/z (relative intensity), 154 ($\mathrm{M}^{+}, 52$), 83 (100). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$: C, 62.33; H, 6.54. Found: C, 62.45; H, 6.42.
(E)-5-[(tert-Butoxycarbonyl)methylidene]-4-ethoxy-3-methyl-2(5H)-furanone ((E)-14a): Elution with H/A 10/1; oil as the second fraction; IR (neat) 1780, 1726, $1638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.51(9 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s})$, $4.45(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 9.1,15.3$, 28.2 (3C), 68.3, 82.3, 103.4, 103.9, 149.4, 161.3, 163.5, 170.3; MS (EI) m/z (relative intensity), 254 (M+, 2), 199 (77), 181 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 61.40; $\mathrm{H}, 7.13$. Found: C, 61.35; H, 7.18.
(Z)-5-[(tert-Butoxycarbonyl)methylidene]-4-ethoxy-3-methyl-2(5H)-furanone ((Z)-14a): Elution with H/A 10/1; crystal as the third fraction, mp $108-111^{\circ} \mathrm{C}$; IR (KBr) 1782, $1717,1680,1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.42(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz})$, $1.51(9 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 4.46(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 5.54(1 \mathrm{H}$, s); ${ }^{13}$ C NMR $\delta 8.9,15.3,28.2$ (3C), 67.9, 81.7, 97.4, 101.6, 152.3, 161.8, 163.4, 170.2; MS (EI) m/z (relative intensity), 254 (M^{+}, 2), 199 (76), 181 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 61.40; H, 7.13. Found: C, 61.45; H, 7.08.

Ethyl 3-ethoxy-4-methyl-2,5-dioxo-3-cyclopentenecarboxylate (13b): Elution with H/A 10/1, oil as the first fraction; IR (neat) 1759, 1723, 1696, $1622 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.28$ (3 H, t, $\mathrm{J}=7.2 \mathrm{~Hz}), 1.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.98(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=0.8 \mathrm{~Hz})$, $3.83(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=0.8 \mathrm{~Hz}), 4.23(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.74(2 \mathrm{H}$, $\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 7.5,14.0,15.8,58.2,62.6,68.6,138.7$, 165.0, 167.6, 190.8, 191.8; MS (EI) m/z (relative intensity), 226 ($\mathrm{M}^{+}, 24$), 198 (100). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 58.35 ; \mathrm{H}, 6.24$. Found: C, 58.28; H, 6.31.
(E)- and (Z)-5-[(Ethoxycarbonyl)methylidene]-4-ethoxy-3-methyl-2(5H)-furanone ((E)- and (Z)-14b). These compounds were obtained as an inseparable mixture on elution with H/A 10/1; oil as the second fraction; IR (neat) 1780, 1726, $1638 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (chemical shifts due to the Z-isomer are indicated in brackets) $\delta 1.32$ [1.32] ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$), 1.41 [1.43] ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$), $1.51(9 \mathrm{H}, \mathrm{s}), 2.08$ [2.09] ($3 \mathrm{H}, \mathrm{s}$), 4.23 [4.26] ($2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$), 4.45 [4.48] $(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0$ Hz), 5.89 [5.61] (1 H, s); ${ }^{13} \mathrm{C}$ NMR $\delta 9.0$ [8.9], 14.1 [14.3], 15.1 [15.2], 61.4 [61.0], 68.3 [68.0], 101.7 [95.6], 104.2 [101.8], 150.4 [152.9], 161.1 [161.7], 164.6 [164.1], 170.0 [170.1]; MS (EI) m/z (relative intensity), 226 (M+, 12), 198 (95), 83 (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$: C, 58.35; $\mathrm{H}, 6.24$. Found: C, $58.37 ; \mathrm{H}, 6.22$.

2-Benzoyl-4-ethoxy-5-methyl-4-cyclopentene-1,3-dione (13c): Elution with H/A 6/1; oil as the first fraction; IR
(neat) 1715, 1699, $1624 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}), 1.98(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.43-7.99(5 \mathrm{H}$, m), 13.7 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR $\delta 6.5,15.8,68.1,123.9,128.3$ (2C), 129.9 (2C), 130.2, 132.9, 163.8, 171.8, 185.4, 196.9, 201.0; MS (EI) m/z (relative intensity), 258 (M ${ }^{+}, 71$), 105 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 69.76; $\mathrm{H}, 5.46$. Found: C, 69.88; H, 5.34 .
(E)-5-(Benzoylmethylidene)-4-ethoxy-3-methyl-2(5H)furanone ((E)-14c): Elution with H/A 6/1; crystal as the third fraction, mp 118-120 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1784, 1682, 1645, 1622 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 1.49(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.11(3 \mathrm{H}, \mathrm{s}), 4.53$ $(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{s}) ; 7.44-7.99(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 9.0,15.4,68.1,99.5,101.9,129.0$ (4C), 133.6, 138.4, 151.9, 161.9, 170.4, 189.1; MS (EI) m/z (relative intensity), 258 ($\mathrm{M}^{+}, 10$), 105 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{4}$: C, 69.76; $\mathrm{H}, 5.46$. Found: C, 69.79; H, 5.43.
(Z)-5-(Benzoylmethylidene)-4-ethoxy-3-methyl-2(5H)furanone ($(\mathbf{Z})-\mathbf{1 4 c}$): Elution with H/A 6/1; crystal as the second fraction, $\mathrm{mp} 120-122^{\circ} \mathrm{C}$; IR (KBr) 1792, 1669, 1653 , $1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s})$, $4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{s}) ; 7.44-8.00(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ 8.9, 14.4, 68.1, 103.3, 107.4, 129.0 (2C), 129.5 (2C), 134.0, 138.0, 148.7, 161.1, 170.4, 191.6; MS (EI) m/z (relative intensity), 258 (M+, 7), 105 (100). Anal. Cal cd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{4}$: C, 69.76; H, 5.46. Found: C, 69.78; H, 5.44.

Photolysis of 12a. A solution of 12a ($200 \mathrm{mg}, 0.708 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was irradiated with a $100-\mathrm{W}$ high-pressure Hg Iamp with a Pyrex glass filter for 19 h at ambient temperature under a nitrogen atmosphere. After evaporation of the sol vent, the products were separated by the method that was used for the catalyzed reaction (see Table 1 for the yields).

Independent Synthesis of (E)- and (Z)-F uranone 14a. To a solution of 11a ($237 \mathrm{mg}, 1.69 \mathrm{mmol}$) in THF (12 mL) was added a THF solution (3 mL) of lithium enolate of tert-butyl acetate [prepared from this ester ($236 \mathrm{mg}, 2.03 \mathrm{mmol}$) and LDA (di isopropylamine +1.6 M hexane solution of BuLi, each 2.03 $\mathrm{mmol}),-10{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$] at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and stirring was continued for 30 min . After the solution was mixed with 5% aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the products were extracted with ether ($10 \mathrm{~mL} \times 3$). The extracts were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was chromatographed (H/A 3/1) to give tert-butyl 2-ethoxy-1-hydroxy-3-methyl-4-oxo-2-cyclobutenylacetate ($248 \mathrm{mg}, 57 \%$): crystal, $\mathrm{mp} 80-83^{\circ} \mathrm{C}$; IR (neat) $1748,1723,1603 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}), 1.48(9 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 2.69$ and 2.77 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=15.4 \mathrm{~Hz}), 4.40$ and $4.50(2 \mathrm{H}, \mathrm{dq}, \mathrm{J}=9.8,7.0 \mathrm{~Hz}), 4.68(1 \mathrm{H}$, br s); ${ }^{13} \mathrm{C}$ NMR $\delta 7.0,15.1,28.1$ (3C), 38.3, 68.9, 82.7, 88.3, 122.2, 171.3, 181.8, 191.1; MS (EI) m/z (relative intensity), 200 ($\mathrm{M}^{+}-57,70$), 155 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 60.92$; H, 7.86. Found: C, 60.97; H, 7.81.

The above cyclobutenylacetate ($197 \mathrm{mg}, 0.77 \mathrm{mmol}$) was dissolved in benzene (5 mL) and added to a solution of Pb $(\mathrm{OAC})_{4}(682 \mathrm{mg}, 1.54 \mathrm{mmol})$ in benzene (5 mL) at room temperature under a nitrogen atmosphere, and stirring was continued for 30 min . The reaction mixture was then treated with water (10 mL) and the precipitates were removed by filtration. The products were extracted with ether ($15 \mathrm{~mL} \times$ 3), and the extracts were washed with brine, dried over $\mathrm{Na}_{2}-$ SO_{4}, and evaporated to dryness. The residue was chromatographed (H/A 10/1) to give (E)-14a ($15 \mathrm{mg}, 8 \%$ as the first fraction) and (Z)-14a ($36 \mathrm{mg}, 18 \%$ as the second fraction) together with 5-acetoxy-5-[(tert-butoxycarbonyl)methyl]-4-ethoxy-3-methyl-2(5H)-furanone ($145 \mathrm{mg}, 60 \%$ as the third fraction).
Representative Procedure for the Thermal Ring Expansion of 12a-e. A solution of 12a ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) in p -xylene (10 mL) was heated to reflux for 2 h under a nitrogen atmosphere. After evaporation of the solvent, the residue was chromatographed (H/A 10/1) to give the diazepinedione 22a ($39 \mathrm{mg}, 56 \%$).

Compounds 12b-e were treated similarly, and the products were separated. The yields are shown in Scheme 4; the cyclopentenediones 13d,e have been reported previously. ${ }^{5 c}$
tert-Butyl 5-ethoxy-6-methyl-4,7-dioxo-1,2(1H)-diaze-pine-3-carboxylate (24a): crystal, $\mathrm{mp} 99-103^{\circ} \mathrm{C}$; IR (KBr) 3187, 1715, 1698, $1644 \mathrm{~cm}^{-1}$; 1 H NMR $\delta 1.37(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}), 1.55(9 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 9.39$ (1 H, br s); ${ }^{13} \mathrm{C}$ NMR $\delta 13.7,15.5,28.0$ (3C), 67.9, 84.5, 125.1, 141.2, 160.7, 161.9, 166.8, 180.1; MS (EI) m/z (relative intensity), 226 ($M^{+}-56,29$), 152 (52), 83 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 55.31; $\mathrm{H}, 6.43 ; \mathrm{N}, 9.92$. Found: C, 55.45 ; H, 6.43; N, 9.78.

Ethyl 5-ethoxy-6-methyl-4,7-dioxo-1,2(1H)-diazepine-3-carboxylate (24b): crystal, $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}$; IR (KBr) 3183, 1723, 1680, $1645 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.37$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$), $1.38(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 4.24(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0$ $\mathrm{Hz}), 4.40(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 9.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta$ 13.8, 14.1, 15.4, 62.9, 68.1, 125.2, 139.6, 160.7, 162.9, 166.8, 179.6; MS (EI) m/z (relative intensity), 254 (${ }^{+}, 12$), 152 (41), 83 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 55.31; H, 6.43; N, 9.92. F ound: C, 55.45; H, 6.43; N, 9.78.

3-Benzoyl-5-ethoxy-6-methyl-1,2(1H)-diazepine-4,7-dione (24c): paste as the second fraction after the first fraction
of 13c by chromatography; IR (neat) 3277, 1665, $1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.21(3 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{q}$, $\mathrm{J}=7.0 \mathrm{~Hz}), 7.45-7.98(5 \mathrm{H}, \mathrm{m}), 9.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR δ 14.1, 15.5, 68.5, 126.6, 128.9 (2C), 130.5 (2C), 134.4, 135.7, 145.1, 161.1, 166.8, 181.3, 191.5; MS (EI) m / z (relative intensity), 286 ($\mathrm{M}^{+}, 3$), 105 (100). Anal. Cal cd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 62.93; H, 4.93; N, 9.79. Found: C, 63.10; H, 4.99; N, 9.56.
tert-Butyl 6-butyl-5-ethoxy-4,7-dioxo-1,2(1H)-diazepine-3-carboxylate (24d): crystal as the second fraction after the first fraction of 13d by chromatography, mp $81-83^{\circ} \mathrm{C}$; IR (KBr) 3239, 1726, 1682, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.94$ (3 H, t , J $=7.0 \mathrm{~Hz}), 1.35-1.51(4 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.56$ $(9 \mathrm{H}, \mathrm{s}), 2.64(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}), 4.19(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz})$, 9.55 (1 H, br s); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0,15.5,23.0,27.5,28.1$ (3C), 30.4, 67.9, 84.5, 129.2, 141.0, 160.7, 162.0, 166.8, 180.6; MS (EI) m / z (relative intensity), 324 ($\mathrm{M}^{+}, 7$), 195 (100), 151 (85). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 59.24; $\mathrm{H}, 7.46 ; \mathrm{N}, 8.64$. Found: C, 59.33; H, 7.51; N, 8.50.
J O980523D

[^0]: (1) (a) Schmidt, A. H. Synthesis 1980, 961. (b) Liebeskind, L. S. Tetrahedron 1989, 45, 3053. (c) M oore, H. W.; Yerxa, B. R. Chemtracts Org. Chem. 1992, 5, 273. (d) Ohno, M.; Yamamoto, Y.; Eguchi, S. J. Synth. Org. Chem., J pn. 1997, 55, 785.
 (2) F or a theoretical study, see (a) Niwayama, S.; K allel, E. A.; Sheu, C.; Houk, K. N. J. Org. Chem. 1996, 61, 2517. (b) Niwayama, S.; Kallel, E. A.; Spellmeyer, D. C.; Sheu, C.; Houk, K. N. J . Org. Chem. 1996, 61, 2813.
 (3) F or recent examples, see: (a) Sun. L.; Liebeskind, L. S. J . Org. Chem. 1995, 60, 8194. (b) Xiong, Y.; Xia, H.; Moore, H. W. J. Org. Chem. 1995, 60, 6460. (c) Xiong, Y.; Moore, H. W. J . Org. Chem. 1996, 61, 9168. (d) Tomooka, C. S.; Liu, H.; M oore, H. W. J . Org. Chem. 1996, 61, 6009. (e) Sun, L.; Liebeskind, L. S. Tetrahedron Lett. 1997, 38, 3663. (f) Onofrey, T. J.; Gomez, D.; Winters, M.; Moore, H. W. J . Org. Chem. 1997, 62, 5658.
 (4) Paquette, L. A.; Kuo, L. H.; Doyon, J. J. Am. Chem. Soc. 1997, 119, 3038 and refs cited therein.
 (5) (a) Sun. L.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 6856. (b) Yamamoto, Y.; Ohno, M.; Eguchi, S. Tetrahedron Lett. 1995, 31, 5539. (c) Yamamoto, Y.; Ohno, M.; Eguchi, S. J. Am. Chem. Soc. 1995, 117, 9653. (d) Paquette, L. A.; Sturino, C. F.; Dousso, P.J. Am. Chem. Soc. 1996, 118, 9456. (e) Yamamoto, Y.; Ohno, M.; Eguchi, S. J . Org. Chem. 1996, 61, 9246. (f) Yamamoto, Y.; N oda, M.; Ohno, M.; Eguchi, S. J . Org. Chem. 1997, 62, 1292.
 (6) (a) Liebeskind, L. S.; Chidambaram, R. J. Am. Chem. Soc. 1987, 109, 5025. (b) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J . Am. Chem. Soc. 1987, 109, 7908. (c) Mitchell, D.; Liebeskind, L. S. J. Am. Chem. Soc. 1990, 112, 291. (d) Zora, M.; Herndon, J. W. J . Org. Chem. 1994, 59, 699. (e) Liebeskind, L. S.; Bombrun, A. J . Org. Chem. 1994, 59, 1149.

[^1]: (7) Squarate 2 was not suitable since the nucleophilic addition did not occur at $-78{ }^{\circ} \mathrm{C}$. F urthermore, α-diazo carbonyl compounds were used since derivatives of diazoalkane such as (trimethylsilyl)diazomethane were too unstable [decomposition during workup gave only 12% of the cyclopentenedione (13: $\mathrm{R}=\mathrm{TMS}$) as a product].
 (8) Pellicciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M. Snyder, J. P.; Williamson, B. L.; Kuethe, J . T.; Padwa, A. J . Am. Chem. Soc. 1996, 118, 1. References are listed for some reactions of α-diazo β-hydroxy carbonyl compounds.
 (9) Begley, M. L.; Gedge, D. R.; Pattenden, G. J . Chem. Soc., Chem. Commun. 1978, 60.

[^2]: (10) Base-promoted conversion of 5-acylidene-2(5H)-furanone to 2-acyl-4-cyclopentene-1,3-dione has been reported: Gedge, D. R.; Pattenden, G. J. Chem. Soc., Chem. Commun. 1978, 880.
 (11) Control experiments suggested that the acid-catalyzed conditions had little effect on the geometrical isomerization of formed furanones 14.

[^3]: (12) Shimada, J .; Hashimoto, K.; Kim, B. H.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1759.
 (13) Ohno, M.; Itoh, M.; Umeda, M.; F uruta, R.; K ondo, K.; Eguchi, S. J. Am. Chem. Soc. 1996, 118, 7075. See ref 6d for the case of chromium carbene complexes.
 (14) The rearrangement of cyclobutylcarbene to cyclopentene has been reported: Paskovich, D. H.; Kwok, P. W. N. Tetrahedron Lett. 1967, 2227. For a general discussion on 1,2-rearrangement of carbene, see Nickon, A. Acc. Chem. Res. 1993, 26, 84, and refs cited therein.
 (15) F or example, we have previously observed adamantylmethylhomoadamantyl rearrangement (which is typical in the cationic version) in the reaction of adamantyldiazoacetate with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$; see ref 13.
 (16) Zwitterionic intermediates have often been proposed in the Rhpromoted carbene rearrangement, in which a metallacycle is postulated as a plausible intermediate: (a) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797. (b) Müller, P.; Pautex, N.; Doyle, A. P.; Bagheri, V. Helv. Chim. Acta 1990, 73, 1233.
 (17) In an exception, the (Z)-isomer was a minor product in the Rhcatalysis of 12a (entry 6), probably because of coordination with a Rh center.

[^4]: (18) (a) Sharp, J. T. In Comprehensive Heterocyclic Chemistry Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984 Vol. 7, pp 595-604. (b) For an example of 6π electrocyclization of diazoketene, see Tomioka, H.; Okuno, A.; Sugiyama, T.; Murata, S. J Org. Chem. 1995, 60, 2344.

[^5]: (19) For a previous ring transformation based on $\mathbf{1}$ to a sevenmembered ring, see: H uffman, M. A.; Liebeskind, L. S. J . Am. Chem. Soc. 1993, 115, 4895
 (20) F or the synthesis of these types of compounds from 1, see (a) Reed, M. W.; Polart, D. J .; Perri, S. T.; Foland, L. D.; Moore, H. W. J Org. Chem. 1988, 53, 2477. (b) Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J . Org. Chem. 1988, 53, 2482.

